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The Michael addition is one of the most important C bond- Scheme 1
forming processes employed in organic synthesis, but it is restricted o
to olefins that bear an electron-withdrawing grdup.response to
this limitation, we recently reported the palladium-catalyzed intra- [patha D s
molecular hydroalkylation of alkenyi-dicarbonyl compound&? -
For example, treatment of 7-octene-2,4-diohewith a catalytic Ac
amount of PAGICH3CN), (2) formed 2-acetylcyclohexanon8)( -
in 81% yield via net addition of the enolic-€H bond across the Z b
olefinic C=C bond (eq 1%. These transformations represent the D
first examples of the transition metal-catalyzed hydroalkylation of  (5-1-7.8-0,
an unactivated olefin with a stabilized carbon nucleoptaited may
provide a general solution to the problems associated with the
alkylation of unactivated olefins. However, further development
of these transformations will require an understanding of the dium methoxide (eq 2}t In a separate set of experiments,
mechanisms of these processes, in particular, the mechanisms ogyclization of )-1-7,8-d, catalyzed by?2 formedtrans-3-3,4-d; in
C—C bond formation and proton transfer. Here we report a 67% yield? which was converted teyn4-4,5-d, in 28% yield2!
deuterium-labeling study that provides insight into the mechanism The stereochemistry afyn4-4,5-d, was established by the 6.0 Hz
of C—C bond formation and proton transfer in the conversiots of  coupling constant of the H(4) and H(5) protons of the pentanoate
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Both inner-sphere and outer-sphere mechanisms have been

established for the palladium-catalyzed addition of oxygamd Stereospecific conversion oE)- and ¢)-1-7,8-d; to cis- and
nitroger? nucleophiles to olefins and for the palladium-mediated trans-3-3,4-d,, respectively, is consistent with outer-sphere ©
addition of carbon nucleophiles to olefihgVe therefore considered  bond formation, provided that conversion 1b£3,4-d, to 3-3,4-d,
both inner-sphere and outer-sphere mechanisms for the palladium-occurs with retention of configuration (Scheme 1 path B. gain
catalyzed hydroalkylation of. These pathways can be potentially insight into the nature of the protonolysis step in the cyclization of
distinguished via cyclization ofEH)-7,8-dideuterio-7-octene-2,4- 1 catalyzed by2, we studied the cyclization of 3,3-dideuterio-7-
dione [E)-1-7,8-d;] (Scheme 1). In the inner-sphere pathway, attack octene-2,4-dionel¢3,3-d;) (eq 3). If conversion ofl to 3 occurred

of the enol carbon atom o&}-1-7,8-d, on 2 coupled with loss of via direct protonolysis of the P€C bond ofll , cyclization of1-3,3-

HCI could form the palladium alkyl olefin chelate compléxd,, d, should form exclusivel-2,4-d, via deuteriolysis of the P€C
which could undergo intramolecular carbometalation followed by bond of intermediatdl -2-d;. However, cyclization ofl1-3,3-d,
protonolysis of the P&C bond oftrans-I -3,4-d, with retention of catalyzed by2 followed by silica gel chromatography formed none

configuratior§ to form trans-3-3,4-d; (Scheme 1, path a). In the  of the expected C(49 isotopomer and instead form&d6-d; in
outer-sphere pathway, attack of the enolic carbon on the palladium-45% isolated yield as the exclusive deuterated isotopomer (Eq 3).
complexed olefin oflll -d, coupled with loss of HCI could form Formation of3-6-d, rather thar8-4-d, in the cyclization ofl-3,3-
palladium cyclohexyl intermediatgs-1l -3,4-d,. Protonolysis of the d, points to migration of palladium from the C(4) carbon atom to
Pd—-C bond ofcis-1I -3,4-d, with retention of configuration would the C(6) carbon atom of the 2-acetylcyclohexanone ring prior to
form cis-3-3,4-d, (Scheme 1, path b). deuteriolysis. Three additional experiments provided insight into

Treatment of E)-1-7,8-d; with a catalytic amount o2 (10 mol the mechanism of palladium migration. In separate experiments,
%) in dioxane at room temperature for 12 h forneesi3-3,4-d; in cyclization of1-1,1,1,5,5¢s, 1-6,6-d,, and1-8,8-d, catalyzed by2
64% isolated yield (eq 2 The stereochemistry afis-3-3,4-d, was formed 3-2,3-d,-6-COCD;, trans-3-4,5-d,, and 3-3,3-d,, respec-
established indirectly by the 9.2 Hz coupling constant of the H(4) tively, as the exclusive isotopomers (eqs6); the stereochemistry
and H(5) protons of the corresponding pentanoate derivatitie of trans-3-4,5-d, was established by the 4.4 Hz coupling constant
4-4,5d, (eq 2)1° generated in 18% yield by treatment cif-3- of the H(3) and H(4) protons of the pentanoate chain of derivative
3,4-d, with (E)-2,3-dibromo-1-phenylsulfonylpropens)(and so- syn4-3,4d,.
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Conversion ofl-1,1,1,5,5d5 and 1-6,6-d, to 3-2,3-d>-6-COCD;
andtrans-3-4,5-d,, respectively (egs 4 and 5), is consistent with
isomerization ofll to the palladium enolate complexlIl via
successives-hydride elimination/addition (Scheme 2)lsomer-
ization of Il to VIl prior to protonolysis is not surprising given the
high reactivity of palladium(Il) alkyl complexes towafdhydride
elimination/additiont* The stereoselective conversion B6,6-d,
to trans3-4,5d, precludes reversible olefin displacement from
intermediatelV (Scheme 2) and also establishes that the stereo-
chemistry generated via initial cyclization &)t and ¢)-1-7,8-d;
is retained upon subsequent conversiogise andtrans-3-3,4-d,,
respectively. Although we were unable to determine the stereo-
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chemistry of 3-2,3-0,-6-COCD; formed in the cyclization of
1-1,1,1,5,565 (eq 4), we presume that intermedidteis also stable
toward olefin displacement (Scheme 2). The failure to form
detectable amounts 8f3,4-d; in the cyclization of1-8,8-d, (eq 6)
precludes protonolysis from the palladiysrdiketonate complex
VIII, but does not rule out reversible formation\dill (Scheme
2).

In summary, we have presented a deuterium labeling study that
provides insight into the mechanism of the palladium-catalyzed
intramolecular hydroalkylation of 7-octene-2,4-diorg. (These
experiments are in accord with a mechanism involving attack of
the enol carbon atom on the palladium-complexed olefirllof
followed by palladium migration and protonolysis from the pal-
ladium enolate comple¥Il (Scheme 2). Further studies in this
area will be directed toward elucidating the structure of palladium
enolate comple¥Il and toward understanding the potential role
of p-diketonate complexVIll in palladium-catalyzed hydro-
alkylation.
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